
2.0

APPLICATION SPECIFIC FUNCTION BLOCK MANUAL

C0Mhn900

CIDDINGS & LEWIS, INC.

NOTE

Progress is an ongoing commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, mformation in this document is subject to change
without notice. The illustrations and specifications are not binding in detail. Giddings and Lewis
shall not be liable for any technical or editorial omissions occurrmg in this document, nor for any
consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is
completely understood. It is the responsibility of the user to make certain proper operation
practices are understood. Giddings & Lewis products should be used only by qualified personnel
and for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI
54936-1658. Giddings & Lewis can be reached by telephone at (920) 921-7100.

401-55377-00

2698

0 1992, 1993, 1994, 1995, 1996, 1997, 1998 Giddings & Lewis, Incosz-3483

ARCNET is a registered trademark of Standard Microsystems Corporation.
IBM is a registered trademark of International Business Machines Corporation.
Windows, Windows 95, NT, ‘C are registered trademarks of Microsoft Co oration.
COMMSOO, N-900, PiC900, PiC409 and PiCPro are trademarks of Gld ings & Lewis, Inc.3

Table of Contents

Application Specific Function Block Guidelines . l - l
Installation.. ... l - l
Revisions .. l-2
ASFB Input/Output Descriptions ... l-3
Using ASFBs ... l-4

Chapter 1 - Introduction . l-5
1.1 -Overview ... l-5

Serial Communication ... l-5
Network Communication.. .. l-6

1.2 - Software Interface .. 1-8
Standard Components.. ... l-8
The PC ... l-8
The PiC .. l-8
Network Communications ASFBs.. l-9
Serial Communications ASFB.. ... l-9
Optional Components.. ... l-10
Giddings & Lewis PiC Dynamic Link Library (DLL) for Windows ..l-10
Giddings & Lewis PiC Dynamic Data Exchange (DDE) Server for Windows l-10
Giddings & Lewis PiC Dynamic Data Exchange (DDE) Server for Wonderware@.l-10

1.3 - Hardware requirements and installation .. l-11
Requirements ... l-11
Connections .. l-11
Installation .. 1-12

1.4 - Software requirements and installation .. l-13
Requirements ... 1-13
Installation .. 1-13

1.5 - Programming requirements .. 1-16
1.6 - COMMBOO startup ... 1-16

Chapter 2 - Programming the PiC .2-1
2.1 - LDO programming overview .. .2-l
2.2 - Network transfers ... 2-2

Main LDO .. .2-2
Network Communications Function Blocks .. .2-3

C_NETxcv .. 2-3
C-NETXFR ... 2-11
2.3 - Serial transfers ... 2-13

Main LDO .. 2-13
C-SERXCV ... 2-14

Chapter 3 - Programming the Host Computer .3-1
3.1 - Overview ... 3-l
3.2 - Interfacing to Standard COMM900 Device Drivers ... 3-l
3.3 - Network Drivers .. 3-l

ARCNT @L@,P%J~) ... 3-2
ANYBODY ()... 3-3
NET900(pl,p2,p3,p4,p5,p6,p7,p8) ... 3-4

3.4 - Serial Drivers .. 3-5
SERIAL-OPEN (pl,p2,p3)... 3-6
SER900(pl,p2,p3,p4,p5,p6,p7,p8) ...3-7
SERIAL-CLOSE (pl) ... 3-9

3.5 - Interfacing to Optional DLL Drivers.. 3-9
3.6 - Interfacing to Optional DDE Server .. 3-10

Table of Contents 1

3.8 - Interfacing to Third Party Drivers... 3-11

Appendix A - Error Codes .A - l
Error Codes from Local Node... A-l
Error Codes from Remote Node .. A-l

Appendix B - COMM900 Data Types ,..B - l

Appendix C - Protocol and Frame Definitions . C - l
PiC Data Communications Frame Description ... c-2
Serial Communications Frame .. c-2
ARCNET Communications Frame... c-2

ARCNET Header ... c-2
Command\Response Frame ... c-3

Command - Control word definitions .. c-3
Response - Control word definitions ... c-3

Index . i

2 Table of Contents

Application Specific Function Block Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (ASFBs) from Giddings & Lewis.

1. Make a back up copy of the ASFB disk you receive and store the original
in a safe place.

2. The disk you receive with the ASFB package will include the following:
1. ASFBs directory(s) containing:

l .LIB file(s) containing the ASFB(s)
l source .LDO(s) from which the ASFB(s) was made

2. EXAMPLES directory(s) containing:
l example LDO(s) with the ASFB(s) incorporated into the ladder

which you can then use to begin programming from or merge with
an existing application ladder

It is recommended that you copy the .LIB and the source LDO files to
your hard drive on the PC in the following way. Remember that ASFB
libraries (.LIB) files and source (.LDO) files must be kept in the same
directory.
l Create a directory that will hold all ASFB LIBs and source LDOs.

For example, you may have the Motion’ ASFB package and the
Communication ASFB package. Copy the appropriate files on the
disks to a directory on your PC called ASFB.
When you installed PiCPro, the PiCLib statement was automatically
entered in your autoexec.bat file as shown below:

SET PICLIB=C:\PICLIB
NOTE: If you chose to alter your PICLIB statement during
installation, it will look different than what appears above.
Now add the ASFB directory to your PICLIB = statement as shown
below:

SET PICLIB=C:\PICLIB;C:\ASFB
l Put the example file(s) in your working directory.

For example, if you always run PiCPro from the directory which holds
all your LDO files, then copy all the ASFB example LDOs to the LDO
directory.

Application Specific Function Block Guidelines I-1

Revisions

3. The first three networks of each ASFB source ladder provide the following
information.

Network 1
The first network is used to keep a revision history of the ASFB. Revisions
can be made by Giddings & Lewis personnel or by you.
The network identifies the ASFB, lists the requirements for using this ASFB,
the name of the library the ASFB is stored in, and the revision history.
The revision history includes the date, ASFB version (see below), the
version of PiCPro used while making the ASFB, and comments about what
the revision involved.
When an ASFB is revised, the number of the first input (EN or RQ- J
to the function block is changed in the software declarationstzble. The
range of numbers available for Giddings & Lewis personnel is 00 to 49.
The range of numbers available for you is 50 to 99. See chart below.

Revision Giddings & Lewis User
revisions revisions

1st

2nd
.
.

50th

EN00 EN50
EN01 EN51

.

.

.
EN49 EN99

Network 1
/...I
X-Name ASFB Source Revision History

Located in Library X-LIB

Requirements:
PiCPro Ver 4.0 or higher

Date Version
- - - - - - - - - - -
MM-DD-YY EN00

Using PiCPro Comments
---------- - - - - - - - -

4.1 Original

1-2 Application Specific Function Block Guidelines

Network 2
The second network describes what you should do if you want to make a
revision to the ASFB.

/...2.......

If you revise the ASFB, do the following:

1. Do a ‘M’odule, save ‘A’s in order to save the original ASFB before
you begin modifying.

2. Change the number on the first input to the ASFB in the software
declarations table to a 50 or greater (for example, EN00 would be
changed to EN50).

3. Update the revision history in network 1.

ASFB Input/Output Descriptions

Network 3
The third network describes the ASFB and defines all the inputs and
outputs to the function block.

/...3

ASFB Description

INPUTS :

Name Data Type Definition
- - - - - - - - - - - - - - - - - - - - - - -
EN00 BOOL enables execution

OUTPUTS:

Name Data Type Definition
- - - - -_------- - - - - - - - - - -
OK BOOL execution complete

Application Specific Function Block Guidelines 1-3

Using ASFBs

4. When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.
l Create a new application LDO starting with the example LDO for the

ASFB package. The advantage is that the software declarations table
for the ASFB has been entered for you.
NOTE: To keep the original example LDO, use the ‘save As’
command. This copies the example LDO to an LDO with the
application name you give it.

l If you already have an application LDO, merge the example LDO with
the application LDO using the optional LDOMERGE software
package. The software declaration tables for both LDOs will also
merge.

l Enter the ASFB into your application LDO.
NOTE: This method is not recommended if the software declarations
table is lengthy. It requires that you manually enter all the inputs and
outputs to the ASFB in the table. With some packages, this is time-
consuming. Any structure, array, array of structures, or strings must be
entered exactly as it appears in the original table. This is critical to the
correct functioning of the ASFB.

1-4 Application Specific Function Block Guidelines

Chapter 1 - Introduction

1.1 - Overview

The COMM900 communication software package provides the software tools
necessary to perform data communications with PiCs. The communication can be
either serially through RS-232 ports or over a network. These two methods of
setting up the communications are summarized below.

COMMSOO Package

1. Serial Software

2 . Network Software

Serial Communication

The serial software allows communication to occur between a host computer (PC)
and one PiC as shown in Figure l-l. This is a single drop connection with only
one PiC connected to a host computer at a time. Other features include:

l A single RS-232 connection from corn port 1 or 2 of the PC to the USER
PORT or a Serial Communications Module port of the PiC.

l Baud rates of 1200, 2400, 4800, 9600, 19200 (use hardware handshaking at
19200).

l Wiring length limited by RS-232 (typically 50 feet at 9600 baud).

Figure l-l. RS-232 Serial Communications (Single Drop)

Personal Computer
PC)

PiC

User
Port

Network Communication

The network software can be used in two ways:

1. Multiple PiCs connected to a host computer as shown in Figure l-2.
2. Multiple PiCs connected without a host computer as shown in Figure l-3.

l The physical connection is:

1. From the optional ARCNET connector on the PiC CPU to the
ARCNET board installed in the ISA slot of the host computer

2. Between the optional ARCNET connectors on the PiCs

This is a multi-drop connection with up to 254 PiCs connected to a host computer
or 255 PiCs connected to each other at one time. Other features include:

l Typical communication rates are 2.5 Mbits/second.
l Connection options include the standard twisted pair (distances up to 400 feet),

or the optional coaxial cable and fiber optics (distances up to 4 miles). Refer
to the PiC900 Hardware Manual for configuration options.

l Greater noise immunity than the serial RS-232 connections.

Figure l-2. Network Connections with Host Computer

Personal Computer
PC)

PiC

Peer-to-Peer/ARCNET
Connector

Peer-to-Peer/ARCNET Peer-to-PeerlARCNET
Connector Connector

I-6 Introduction

Figure 1-3. Network Connections without a Host Computer

PiC

Peer-to-Peer
/AWN ET
Connector

NOTE: A single PiC may be connected via ARCNET to a PC where the features
listed under network communications are required, e.g., wiring distance
or speed.

1.2 - Software interface

Standard Components

The PC

The PC or host computer is configured to communicate to a PiC using software
communication drivers provided as part of the COMM900 package.
Communication drivers are used to implement both the ARCNET and serial
communications. They allow the host computer to operate like a transmitter. It
can then send READ or WRITE messages.

The COMM 900 communications driver may be run under DOS, Windows,
Windows 95, or Windows NT.

The host computer must initiate all messages. No unsolicited messages are
supported. If an application requires a PiC to send information to the host, the
host computer would have to poll the value at a predetermined time interval.

The PiC

A PiC communicates to a host computer or another PiC via function blocks called
Application Specific Function Blocks (ASFBs). They are called within the main
application ladder.

There are two transceiver ASFBs:

C NETXCV for use with network communication
CISERXCV for use with serial communication.

A transceiver function block receives messages from external devices connected
to either the ARCNET port or the serial port, executes the command , and
responds to the sender with the status. A message will contain a command to be
performed. A READ command is sent to a PiC when an external device needs to
know the value of a certain variable(s) stored within the PiC. A WRITE command
is sent to a PiC when an external device needs to change the value of a certain
v a r i a b l e (s) .

There is one transmitter ASFB:

C-NETXFR for PiC-to-PiC transfers.

The transmitter function block sends messages from one PiC to another PiC
connected via the ARCNET port. No other transport media are supported at this
time. A message will contain a command to be performed. A READ command is
sent to another PiC when one PiC needs to know the value of a variable stored
within the other PiC. A WRITE command is sent to another PiC when the one PiC
needs to change the value of a certain variable within the other PiC. A transmitter
can only be used when implemented with ARCNET.

Note that any PiC used in PiC-to-PiC transfers may also communicate with and
respond to messages originating from a host computer.

The COMM900 software includes the ASFBs shown below. You install the
appropriate ASFB(s) and use them in your application ladder. Or you can use the
example LDO which has the ASFBs incorporated into its logic.

Network Communications ASFBs

Performs network data transfers
between the PiC in which it is
enabled and a PC or another PiC.

Establishes the network ID of the
PiC in which it is executed.

Serial Communications ASFB

Communications-Serial

Performs serial data transfers
between the PiC in which it is
enabled and a PC.

Transmitter ASFB NAME -
C-NETXFR C-NETXFR

RI) CONE

WE FAIL
Allows the PiC in which it is
transitioned to initiate a data

NODE OVFL

transfer request to another PiC. RSVD ERF

L

CMD

TYPE

LNDX

CNT

RNDX

/nfroducfion 1-9

Optional Components

The following section describes optional communications drivers available for use
with the COMM900 package.

Giddings & Lewis PiC Dynamic Link Library (DLL) for Windows

This Dynamic Link Library allows a Microsoft Windows application developed
using Microsoft Visual Basic or Microsoft C++ to communicate to one or more
PiC(s) that incorporate the COMM900 function blocks. The 1Qbit DLL is
designed to run on Windows 3.1 and the 32-bit DLL is designed to run on
Windows 95 or NT.

The DLL is an additional driver that replaces the MS-DOS based communication
drivers that come with the standard COMM900 ASFB package as described
above. The communication interface works just like the interface defined for the
standard MS-DOS based drivers, but this driver allows applications to run under
the Window GUI interface.

Drivers are available for both ARCNET and serial communication options. Please
refer to the documentation for your application development tool kit for
information on how to link your application to a standard DLL.

Giddings & Lewis PiC Dynamic Data Exchange (DDE) Server for Windows

The PiC DDE Server is a Microsoft Windows application which acts as a DDE
(Dynamic Data Exchange) server and allows other Windows applications to access
data on Giddings & Lewis PiCs via the COMM900 protocol. The 16-bit server is
designed to run on Microsoft Windows 3.1 and the 32-bit server is designed to
run on Windows 95 or NT. These servers may be used by any Microsoft Windows
program which is capable of acting as a DDE Client.

The DDE server physically communicates to a Giddings & Lewis PiC through a
serial port or an industry standard ARCNET port. The ARCNET configuration
allows the server to communicate to a network of PiCs and a serial configuration
is a single-drop connection. The ladder running in the PiC must incorporate the
COMM900 ASFBs (version 1.3 or higher) package.
NOTE: Communication to a PiC that incorporates a PiCPro Network ID feature
requires COMM900 ASFB version 2.0 or higher.

More information on the specific features and programming of the PiC DDE
Server for Windows can be found in the PiC DDE Server User Manual.

Giddings & Lewis PiC Dynamic Data Exchange (DDE) Server for Wonderware@

The PiC DDE server for Wonderware is software compatible with the PiC DDE
Server for Windows as described above. The difference is that this version has
been developed to optimize the data communications between the PiC and the
DDE server. Fast DDE is used to communicate blocks of data. This
implementation provides better data throughput for applications performing large
data collection when using the Wonderware Man Machine Interface software.

NOTE: Even though many software developers have also implemented the Fast
DDE protocol, the Wonderware version of the DDE server should only be used
when interfacing to the Wonderware MMI.

l-10 Introduction

1.3 - Hardware requirements and installation

Requirements

Hardware requirements for COMM900 are as follows.

l PiC

l PC

l Cable/wire

Connections

Serial Communications

. Cab les

Serial

PiC User Port (or the 2 or 4
ports on the optional serial
communications module)
100% IBM compatible

Network

PiC with peer-to-peer
communications capabilities

100 % IBM compatible with
ARCNET card

RS-232 See the descriptions at
25-pin or g-pin D connector to Network
lo-pin CPU or 40-pin Serial
Communications Module screw
terminal connector
NOTE: Hardware handshaking
is required for baud rates of
19200.

Connections
For communication rates up to 9600 baud, an ordinary three wire serial cable is
used to connect the PiC to the PC. Pinouts for the g-pin or 25-pin PC connector
to the lo-pin screw terminal connector are shown below. If using hardware
handshaking, connect the PiC RTS to the PC CTS and the PiC CTS to the PC RTS.
NOTE: The PiC serial User Port can be used with baud rates up to 19.2K. Above
19.2K baud, a Serial Communications Module must be installed in the main rack.
All communication rates above 19.2K baud require hardware handshaking.

On the PiC to a to a

Screw terminal connector Q-Din P-R 25-Din
GND <------------------------ ____ > pin 5 GND pin 7
Receive data <--------------------> pin 3 Transmit data pin 2
Transmit data <-- __________ ------> pin 2 Receive data pin 3

Introduction 1-11

Network Communications Connections

Communications capabilities on the PiC CPU Module

The PiC CPU module must have ARCNET capabilities. Refer to the PiC900
Hardware Manual for wiring ARCNET.

ARCNET card for the PC

Refer to the PiC900 Hardware Manual for recommended ARCNET board
suppliers. Jumpers must be set to properly configure the board for the PC.

The drivers included with the COMM900 package are written to support the PCX
ARCNET module.

The default software addresses used by the example programs are defined as
follows:

Module I/O address Module memory address Mode node number

Ox2eO oxccooo 3

Installation

If you are configuring a host computer to communicate to a PiC via ARCNET,
you will need to install an ARCNET board into the ISA bus of your computer.
The card will require an I/O port and memory address to be selected. It will also
require an available IRQ to be correctly installed. Please refer to the
documentation that comes with your card for more information.

CAUTION

If the card is not installed correctly or if a conflicting address or
IRQ is chosen, the communication software may run intermittently
or not at all.

1-12 lnfroduction

1.4 - Software requirements and installation

Software requirements and installation procedures for the COMM900 package are
covered in this section.

Requirements

In the PiC
PiCPro/PiCServoPro - Version 7.1 or higher required

In the PC
MS DOS 6.22 or higher
Windows, Windows 95 or NT

Installation

All files included in this package start with the characters C- to indicate
communications. The ‘C’ and main ladder programs need not retain this
convention. The ASFB ladders should retain the names as they were delivered to
maintain compatibility with future offerings from Giddings and Lewis.

The COMM900 files are grouped into directories according to their usage (i.e.,
network, serial). You will use the files from the directory applicable to your
communication setup. If you will be developing a network application, copy the
files from the \NET-LDO\ASFBS directory to your ASFB directory. Example
ladder programs can be copied from the \NET-L,DO\EXAMPLES directory. If
you will be developing a serial application, copy the files from the
\SER-LDO\ASFBS directory to your ASFB directory. Example ladder programs
can be copied from the \SER\EXAMPLE directory.

For more information on copying the files, please see the ASFB Guideline section
at the beginning of this manual.

NOTE

If you copy both the serial and network ASFB files into your
ASFB directory, you will see duplicate function warnings when
you start PiCPro. This is because both versions share some
function blocks and are included in both library files.

Typically, this is not a problem unless the function block is
changed and not updated in both libraries.

The program code for the PC drivers is found in the \NET-C or \SER-C
directories for the network or serial versions respectively. Simply copy these files
to the directory that you will be developing your application in.

Introduction 1-13

The following files are included in the COMM900 ASFB package.

NET-C The files in this directory are the ‘C’ files for communicating over an
ARCNET network.

N900.BAT Example batch file for compiling.
C-CNET.C Communication driver.
C-CNET.H Include file used in compiling.
C-CNET.OBJ Object module.
C-NETSOO.EXE Executable example program using

communication.
C-NET900.C Source of example program.
C-NET900.0BJ Object module.

NET-LDO The files in this directory are the PiC ladder files for
communicating over an ARCNET network. They are in two
directories.

ASFBs

C-MEMX.LDO*
C-MEMX.REM*
C-NETXCV.LDO

C-NETXCKREM
C-NETLlB.LIB
C-NETXFR.LDO
C-NETXFR.REM
C-BYTEMV.LDO*
C-BYTEMV.REM*
C-STRMOV.LDO*
CSTRMOy.REM*

ASFB for memory transfer (used in C-NETXCV.)
Remark file.
ASFB for communication through the ARCNET
port.
Remark file.
Library of ASFBs.
,ASFB for initiating a network message.
Remark file.
ASFB for reading and writing memory.
Remark file.
ASFB for reading and writing STRING memory.
Remark file.

* These are auxiliary ASFB files that support the C NETXCV and
C-NETXFR ASFBs. Do not access these ASFBs& your ladder.

EXAMPLES

C-NETSOO.LDO

C-NETSOO.REM
C-NETSND.LDO

C-NETSND.REM

Main LDO example using the C-NETXCV
function block.
Remark file.
Main LDO example using the C-NETXCV and
C-NETXFR function blocks.
Remark file.

‘l-14 Introduction

SER-LDO The files in this directory are the PiC files for serial transfers.
They are in two directories.

ASFBs

C-MEMX.LDO*

C-MEMX.REM*
C-SERLIB.LIB
C-SERXCV.LDO
C-SERXCV.REM
C-BMEMV.LDO*
C-BYTEMV.REM*
C-STRMV.LDO*
C-STRMV.REM*

ASFB for memory transfer used in
C-COMBOO.LDO.
Remark file.
Library that contains ASFBs.
Communications driver.
Remark file.
ASFB for reading and writing memory.
Remark file.
ASFB for reading and writing STRING memory.
Remark file.

EXAMPLES

C-SER900.LDO Main LDO.
C-SERSOO.REM Remark file.

SERIAL-C The files in this directory are the ‘C’ files for serial transfers.

CS900. B A T , Example batch file for compiling ‘C’ files.
C-CSER.C Serial communication driver for ‘C’ programs.
C-CSER.H Include file used when compiling ‘C’ files.
C-CSER.OBJ Object file.
C-SLIB2.OBJ Object module.
C-SLIB2.ASM Serial port hardware interface for ‘C’ programs.
C-SERSOO.OBJ Object file.

C-SERSOO.EXE Executable example ‘C’ program using
communications.

C-SER900.C Source of example ‘C’ program using
communications.

* These are auxiliary ASFB files that support the C-SERXCV ASFB. Do
not access these ASFBs in your ladder.

Introduction 1-15

1.5 - Programming requirements

When programming the host computer to communicate to the PiC, it is important
that both sides are configured correctly and do not conflict with each other. If
there is a problem with the configuration, you will typically get one of the error
messages shown in Appendix B of this manual.

The important thing to note if programming with serial communication drivers is
that the serial port configurations are the same for the PiC and the PC. This
includes the baud rate, parity, number of stop bits, etc.

If programming with the network communication drivers, make sure that each
device (i.e., the PC and each PiC) have a different node number. It is also
important that the settings for your ARCNET card be entered correctly into the
network communications drivers. The software in the PC must know the settings
of the ARCNET card in order to communicate to it.

1.6 - COMMSOO startup

To start up COMM900 on the PiC and PC, follow the steps below for your
application.

Network transfers
1. PiC- Download and scan the C NET900 module.
2. PC - Run the C-NET9OO.EXE Ele.

Serial transfers
1. PiC - Download and scan the C SER900 module.
2. PC - Run the C-SERBOO.EXE fae.

1-16 Introduction

Chapter 2 - Programming the PiC

2.1 - LDO programming overview

This chapter describes the ladder diagram software that executes in the PiC to support serial or
network communications with a program executing in a PC. Either serial or network
communication uses the same fundamental technique.
The main ladder diagram uses ASFBs that handle the communications task in the PiC. All
command processing and error checking is handled by the ASFBs. ASFBs are functionally
identical to UDFBs (User Defined Function Blocks). UDFBs are explained in the Software
Manual.
The ASFBs process requests for data. These requests may originate from a host computer or
another PiC. It is important to remember, however, that a PiC may send a message to another
PiC but never to the host computer.
unsolicited messages.

The software running in the host does not support

1. Main LDO
This is the user application program and contains the definition of the
reserved data area within the PiC that will be accessed. The main LDO
makes a function call to the ASFB that performs the communication
function. The reserved data area is in the form of a rigid data structure. It
must be defined as shown in the C-NETXCV ASFB description.
The main LDO calls an ASFB that accesses the data structure and
performs the communication function over the serial or ARCNET port.
The main LDO can access the memory locations in the data structure
directly or additional logic can be added to the LDO to copy that data to
different variables.

2. ASFBs for communication
The ASFBS are modules written by Giddings & Lewis to perform the data
communication functions. The type of function blocks you use will
depend on your application.

PC to PiC Data Transfers
C-NETXCV or C-SERXCV
These are transceiver function
blocks. They handle the
hardware initialization and
communications services for
the main LDO. In addition, all
protocol and frame
encode/decode is done by these
function blocks.

PiC to PiC Data Transfers
(Network Only)
C-NETXCV and C-NETXFR
The C NETXFR function block is a
transr&ter function block. It is
used to initiate a request for the
C-NETXCV function block to send
a message to another PiC.

Programming the PiCgOO 2-1

2.2 - Network transfers

Main LDO

The main ladder module requires the transceiver ASFB (C-NETXCV) to be incorporated into
its logic. This function block must be enabled every scan and uniquely identifies a node on the
ARCNET network. An example ladder module named C-NET900.LDO is included to
illustrate how the function block is programmed. This program can be used to communicate to
a host computer or to another PiC.
The main ladder module may have the optional transmitter ASFB (C-NETXFR) incorporated
into its logic. This function block must be one-shot and allows a node to initiate a network
message to another PiC node. An example ladder module name C-SND900.LDO is included
to illustrate how the function block is programmed. This program can be used to send a
message to another PiC. This ASFB cannot be used to send a message directly to a host
computer.
NOTE: The C NETXFR ASFB requires the C NETXCV ASFB to operate.
The following diagram shows that when the m&r module is open and the F u n c t i o n s menu is
displayed, the ASFBs library is found under USER.
The source LDOs for the ASFBs can be viewed by selecting User Function under View. Refer
to the description of UDFBs in the Software Manual for further information.

Figure 2-1. NET900 ASFBs

Wifes C o n t a c t s / C o i l s F u n c t i o n s D a t a J u m p s H o r i z o n t a l V e r t i c a l Longname
. I .

NOTE: The C BYTEMV, the C MEMX, and the C-STRCPY function blocks support the
C NETXCV arid the C NETXFKfunction blocks You do not use them in your application
1aJder but they must be & the ASFB library.

2-2 Programming the fiC9UO

Network Communications Function Blocks

Network r NAME 7
Transceiver IC-NETXCV 1

iEN
I

OKt-
I I

-(NODE FAILE

I I
{BOOL ERRF

I I
-/DATA RCMDt-

I I -
-lQ’JE I

Inputs: EN (BOOL) - enables execution (Typically
enabled.)
NODE (USINT) .- node number of this PiC
BOOL (ARRAY) - memory area for boolean data
,DATA (STRUCT) - memory area for all data
except boolean
QUE (ARRAY OF STRUCT) - Request to transfer
message queue
R (STRUCK) - last received message header data

Outputs: OK (BOOL) - initialization complete
FAIL (BOOL) -initialization failed
ERR (INT) - error number
RCMD (BOOL) - message received

C-NETXCV is used to handle network data transfers between the PiC in which it is executed
and a PC or between the PiC in which it is executed and another PiC. It performs the
following functions:

1. Checks and initializes the communications daughter board if used.

2. Assigns a unique node (identification) number to this PiC.

3. Defines memory areas in the PiC for data that is transferred.

4. Performs the read or write operation on the memory area.

5. Sends a response to the PC or PiC indicating (un)successful completion of
the command.

lmuts

EN The input at EN enables communications with the PC or another PiC
when energized. De-energizing this input causes communications to
stop being processed for this node an.d the communications port to be
closed. This input should remain energized every scan. Typically, it
is wired to the power bus.

N 0 DE The input at NODE should be a number (1 - 255 excluding 65 or 41
hex) for this PiC. This number should not be assigned to any other
device (PiC or PC). The number is u.sed to uniquely identify this PiC
on the ARCNET network.

Programming the PiC900 2-3

IMPORTANT

If the PiCPro over ARCNET feature is used, this node number
must match the node ID set in the PiCPro menu Process or - se t
Ne Work node ID. If it does not, initialization will fail. If the
node number is unknown, a node number of zero (0) can be
entered and the function block will automatically select the
appropriate number.

B 0 0 L The input at BOOL should be an array (created and declared) with 2 to
999 boolean elements. This area is used to hold boolean data that is
being transferred.

IMPORTANT

The boolean array size is also entered in the structure at the
DATA input of C-NETXCV. The default size specified there is 2.
If you create an array with a different size, be sure to change the
default in the structure at the DATA input also.

IMPORTANT
Do not use a positive or negative transistional contact in your LDO with the
BOOL array.

If it is necessary to set up a transistional contact with a BOOL array, use the
BOOL array to energize another boolean coil. Then use this boolean for the
transistional contact as shown in the example below.

l BOOL-X

/--p/-----

DATA The input at DATA is used to specify the name of the main data area.
This data area is a structure that you enter which contains every data
type available except booleans. For each data type that exists in the
PiC, there are two field entries in the structure. The format for this
data structure is shown in Table 2-1.

2-4 Programming the PiC900

IMPORTANT

The format of the structure has already been defined and must be
followed. The data types must be entered exactly as listed in the
declarations table. But the size of each data type is selected by
you, with each type having a minimum size of 2 (the default) and
a maximum of 999. Always be sure to change the I n i t Val
column in the software declarations table when you change the
size of a data type. Failure to do so will generate an error or cause
invalid data transfer.

IMPORTANT

If your application does not require a math co-processor and you
are running PiCPro Version 7.0 or higher, an error message
stating that a math co-processor is required will appear when
downloading a program that contains this data structure. This
message is generated because the data structure has data types that
require a math co-processor, i.e. REAL, LWORD, ULINT, etc.
You can choose to ignore this error and continue downloading.

OR

If you want to eliminate the message from appearing, you can
change the following datatypes in the DATA structure.

.REAL-D REAL (O..l)

.LREAL-D LREAL (O..l)

The data types that require a math co-processor are now
eliminated from the program and, consequently, the error message
will not appear. The DINT arrays you are replacing the existing
data types with do not require a math co-processor.

*The array size for these DINTS is double the original size for the
64-bit variables. This insures that the memory map for the data
structure remains the same.

An example showing how to configure this data structure follows after the data
descriptions.

Programming the PiC900 2-5

Table 2-1. Si
TYPO
STRUCT

I .WORD S
.WORD:D I

I .DWORb S
.DWORD-D I

UINT
%(O..l)
EKD (0.J)

%ZRD to..11

I .LWORD-S
I

. I

.LWORD:D %RD (O..l)

Et-r (O..l)

ZiK (O..l)

EL-r (0.2)
EST to..11

EL (O..l)

kE2.L (O..l)

k%NO [SO] (O..l)
UINT
DATE (0.J)
UINT‘ ’
DANDT (0.J)

%k OF-DAY (0.J)
UINr-
TIME (O..l)

%sr (0.J)

%k (O..l)

END-STRUCT

.xturc
hit Val

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

z

2

2

2

2

2

2

2

54321

at DATA Input to C-NETXCV
Description
Size of the array at the previous input (BOOL) to
C-NETXCV.
These members of the DATA structure define an
array data area and its size for every data type except
boolean.
The members work in pairs. The first entry defines
the size of the array. Its name ends with ‘5”. The
second entry defines the array data area. Its name
ends with “D”.
The name of the structure and the size of any or all
arrays can be changed. The order of the members of
the structure and the data types must not be
changed.
If the size of an array is changed, ensure that the
initial value for its size variable is also changed.
Up to 240 bytes of data can be transferred in any
one read or write operation. The number of array
entries this represents depends on the data type and
the number of bytes required to hold the data type.

The CUST members of the DATA structure hold
the user’s customized data.
As with the arrays for the data types, these
members work in pairs. The difference is that the
data member (i.e., CUSTl-D) does not have to be
an array. You may elect to replace the ‘CUSTl-D’
entry with one or more of any of the data types.
You must, however, count up the exact number of
bytes used and put that number into the initial
value column in the software declarations table for
the size of your data area. See the example on the
following page.

IMPORTANT
The last data variable CHKSUM must be included in the structure with the initial value
as shown. This memory location with a known value is used by the ASFB to verify
the configuration of the data found in the data structure, If the structure is not
configured correctly, an error will be generated upon initialization.

2-6 Programming the PiC900

Example

In Table 2-1, the DATA input structure from the software declaration table is
shown with all the supported data types as different members of one large
structure. Boolean data is also supported, but it is defined as its own array
specified at the BOOL input of the function block.

The first step is to determine how many addresses of each of the different data
types will be required for the application. The array size for the appropriate data
type must then be modified to reflect the number of addresses required for each
data type. All of the data types except boolean variables can be found within the
DATA input structure and have a name ending with ‘ D” for Data memory.
Boolean data is stored in a separate BOOL array speciEed at the BOOL input of
the function block.

The second step is to define the current array size for each data array by
changing the initial value of the size variable located above the data array entry.
All of the size variables including the boolean array size can be found within the
DATA input structure and have a name ending with ‘S’ for data memory Size.
Enter in the initial value column for the size variable, the total number of array
elements for that data type. For example, if the boolean array is defined to be
BOOL(0..32) enter a 33 for the initial value for DATA.BOOL-S. If the integer
array is defined to be DATA.INT-D(0..99) enter a 100 for DATA.INT-S.

NOTE: It is very important that the initial value for each of the data memory size
variables accurately reflect the actual array size of each data variable.

The custom data area identified as CUSTl through CUST8 at the bottom of the
data structure is used to access data that is better stored in format other than an
array. Typically this would be used if you need to send multiple types of data in
a single message transfer. With any data transfer, a maximum of 240 bytes can be
sent per transfer.

The custom data area lets you replace the DATA.CUSTx D entry in the data
structure with any one or more data type variables. Thereis no limit to the
number or type of variables, but they must all be inserted one after the other in
the data structure immediately following the data memory size variable. The
initial value for the size variable is then the total number of bytes consumed for
the data types you entered.

If, for example, you want to transfer two INT variables and 20 REAL variables,
the custom data area could be modified as shown below to transfer both sets of
variables in one data transfer. Note that the value stored in the initial value
column of the size variable represents the total number of bytes that your data
consumes. Refer to the PiCPro Software Manual for the byte counts for each data
type.

.CUSTl-S USINT

I .INTl I INT I
I .INT2 I INT I I (2 bytes)

I

.REAL REAL(O.rI (80 bytes)

The data structure allows for up to eight different custom data types. Each
custom data type must be 240 bytes or less if they are sent in one transfer.

Programming the PiC900 2-7

QUE The input at QUE should be the array of structures shown in Table 2-
2. This input is the same as the QUE input to the C-NETXFR
function block. The que communicates a data transfer request
between the C-NETXFR and the C-NETXCV function blocks.
The name of the array of structures can be changed. The format,
member names, and data types must not be changed.

Table 2-2. Array of structures at QUE input to C-NETXCV and C-NETXFR

UlNT

USINT

Name TvDe Descrhtion
STRUCT(O..lO)

-NODE USINT

.RSVD USINT

CMD USINT

Number of the source node (1 - 255).
Reserved for future use.

Value = 1 if write command; value = 0 ij
read command.

#TYPE USINT Type of data being transferred. Thi:
identifies the array in the DATA structure
See Appendix B for types.

.LNDX Number of the local array element where
data is to start being read from or writter
to.

.CNT Number of elements being transferred
The number of elements depends on tht
size (in bytes) of each element. Up tc
240 bytes can be transferred.

RNDX

.STAT

UINT

USINT

Number of the remote array index wherr
data is to start being read from or written
to.

Response status. This is a status returned
from the remote node indicating if the
message was processed successfully.
See Appendix A for error codes.

END-STRUCT

2-8 Programming the PiC900

R The input at R should be the predefined structure shown in Table 2-3.
Command (header) data is placed in this structure by the PiC when a
message is received and has been processed. The data is not required
for data transfers. It is provided for programmers to reference and can
be used to determine the content of the last message processed.
The name of the structure can be changed. The format, member
names, and data types must not be changed.

Table 2-3. Structure at R input to C-NETXCV

Name TvD Descrbtion
STRUCT

.NODE USINT

.RSVD USINT

.DIR USINT

.TYPE USINT

.LNDX UINT

Number of the source node (1 - 255).

Reserved for future use.

Value = 1 if write command; value = 0 if read
command.
Type of data being transferred. See Appendix B.
Number of the array element where data is to start
being read from or written to (0 to n - 1, where n is
the size of the array). The array is a member of the
DATA structure. The member is specified by .TYPE
above.

.CNT

. RSVD2

USINT

USINT

END-STRUCT

Number of elements being transferred. The number
of elements depends on the size (in bytes) of each
element. Up to 240 bytes can be transferred.
Reserved for future use.

Programming the PiC900 2-9

Outmlts

OK

FAIL

ERR

The output at OK will be set if the initialization has been completed
successfully.

The output at FALL will be set if the initialization was not completed
successfully. The output at ERR will indicate the error number.

The output at ERR does not equal 0 when an error occurs in‘ the
initialization of the C-NETXCV ASFB.

ERR #
1
2

3

4

5-44

133

>lxxx

Description
The ARCNET hardware ID check failed.
The transmitter is not available. An ARCNET hardware
failure has occurred.
The power-on reset flag cannot be cleared. An
ARCNET hardware failure has occurred.
The number specified at NODE is assigned to another
node. Check NODE numbers.
Check Appendix B in the Software Manual for errors.
Structure defined at DATA is invalid. Check Init Values
declared for all entries in the structure defined in the
software declarations table.
The node number has been set by PiCPro and is
different than the number you entered at the NODE
input. The XXX holds the PiCPro Network ID node
number 001 through 255.

R C M D The output at RCMD is energized for one scan if a new message is
received. The message header is available in the structure defined at
the R input.

2-10 Programming the PiC900

I C-NETXFR
USER I

Network r-NAME1 Inputs: RQ (BOOL) - requests execution (Typically,
Transmitter IC-NETXFR 1 one-shot)

I I QUE (ARRAY OF STRUCT) - memory area for
-]RQ CONE/--- queuing multiple requests. This memory is

I I shared with the C-NETXCV function block.
-(WE FAILF NODE (USINT) - destination node number

I I RSVD (USINT) -reserved for future use
{NODE OVFL+ CMD (USINT) - command to be performed
I I TYPE (USINT) -data type to be transferred

1 RSVD ERRF LNDX (UINT) - local array index
I

/CM, I
CNT (USINT) - number of array elements to
transfer

I RNDX (UINT) - remote or destination array
1 TYPE index

~LNDX 1
outputs: DONE (BOOL) - execution complete

FAIL (BOOL) -execution failed
I I OVFL (BOOL) - energized if more than 10

{CNT I messages have been queued

;RNDX /
ERR (INT) -0 if initialization is successful

0 if initialization is unsuccessful

The C-NETXFR ASFB is used to initiate a network data transfer message to
another PiC. This ASFB must be used with the C-NETXCV ASFB. It performs
the following functions:

1. Queues data transfer request to be processed by the C-NETXCV ASFB
and sets the queue overflow output if the queue is full.

2. Waits for the message to be sent and sets the DONE or FAIL outputs
depending on the status of the reply from the destination node.

The input at RQ should be one-shot to request a data transfer. The
format of the command that will be initiated is defined by the other
inputs to this function block. The RQ input is typically not
transitioned again until after either the DONE or FAIL output has been
sent from the previous request.

Q U E The input at QUE should be the array of structures shown in Table 2-
2. This input is the same as the QUE input to the C-NETXCV
function bldck.

N 0 DE The input at NODE should be the node number of the PiC that wil.l
receive the command.

R S V D Reserved for future use.
C M D The input at CMD defines the command to be sent.

1 w r i t e d a t a f r o m t h i s n o d e t o a n o t h e r n o d e
0 = Gad data from another node to this node.

.

TY P E The input at TYPE indicates the data type to be transferred. See
Appendix B.

Programming the PiC900 2-l 1

L N D X The input at LNDX indicates the starting local array index that data
will be written from or read to by the data transfer (0 to n - 1, where n

C NT
is the size of the array).
The input at CNT indicates the number of array elements to
READ/WRITE.

R N DX Number of the remote array index where data is to start being read
from or written to (0 to n - 1, where n is the size of the array).

OutDuts

D 0 N E The output at DONE will be set when the command has been sent and
received successfully by the destination node.

FAIL The output at FAIL will be set when the command was not sent or
received successfully by the destination node. The output at ERR will
indicate the error.

OVFL The output at OVFL will be set when more than 10 data transfer
requests have been requested at one time. The output at ERR will
indicate the error.

ERR The output at ERR does not equal 0 when an error occurs in the
execution of C_NETxFR.
ERR # Description

1 Unrecognized data type.
2 Requested data exceeded array size.
4 Data byte count > 240.
5 Destination nodes data structure is invalid. Check Init Values

declared in the software declarations table.
17 Timeout waiting for response. Network may be busy. Resend

message. If this does not work, check ladder scan and
hardware wiring.

18 Not enough characters in response.
33 Queue overflow. More than 10 messages sent before the first

one is complete.

2-12 Programming the PiC900

2.3 - Serial transfers

Main LDO

The main ladder module requires the transceiver C-SERXCV ASFB incorporated
into its logic. This function block must be enabled every scan and accesses the
serial port on the PiC. An example ladder module named C-SER900.LDO is
included to illustrate how the function block is programmed. This program can
be used to communicate to a host computer.

The following diagram shows that when the main module is open and the
Fun c t ions menu is displayed, the ASFBs library is found under USER.

The source LDOs for the ASFBs can be viewed by selecting User Function under
View. Refer to the description of UDFBs in the Software Manual for further
information.

Figure 2-2. Serial ASFBs

, Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname
. . 1 . .

NOTE: The C-BYTEMV, C-MEMX, and C-STRMV function blocks support the
C-SERXCV function block. You do not use them in your application ladder but
they must exist in the ASFB library.

Programming the PiC900 2-13

C-SERXCV
USER I

Serial
Communica-
t i o n s

/PORT FAIL1

Inputs: EN (BOOL) - enables execution (Typically
enabled.)
PORT (STRING) - PiC serial port
CFG (STRING) - configuration of port
BOOL (ARRAY) - memory area for boolean
data
DATA (STRUCT) - memory area for all data
except boolean
RSVD - reserved for future use
R (STRUCT) - last received message header
data.

Outputs: OK (BOOL) - initialization complete
FAIL (BOOL) - initialization failed
ERR (INT) - error number
RCMD (BOOL) - message received

The C-SERXCV function block is used to make serial (RS-232) data transfers
between the PiC in which it is executed and a PC. It performs the following
functions:

1. Defines and configures the PiC serial port.

2. Defines memory areas in the PiC for data that is transferred.

3. Performs the read or write operation on the memory area.

4. Sends a response to the PC indicating (un)successful completion of the
command.

The input at EN should be energized to enable communications with
the PC. De-energizing this input causes communications to stop being
processed for this node and the communications port to be closed.
This input should remain energized every scan. Typically, it is wired
to the power bus.

P 0 RT The input at PORT specifies which serial channel on the PiC is being
used for communications with the PC.
If user port 2 on the PIC CPU module is tb be used, create a string
variable and initialize it as ‘USER:$OO’.
If a 2 or 4 channel serial communications module is used, define the
port with the ASSIGN function block (described in the Software
Manual). The ASSIGN function block must execute before this input
can be used for the serial communications module.

2-14 Programming the PiC900

C FG The input at CFG establishes the communication parameters for the
PiCs serial port. Create and assign a string at this input in the same
format that is defined for the CFGZ input to the CONFIG function
block (explained in the Software Manual).
Ensure that the parameters defined here match the parameters defined
for the PC (in the SERIAL-OPEN function).
NOTE: Drivers in the PC do not recognize XON/XOFF. Use
hardware handshaking for 19200 or greater baud rates.

BOO L The input at BOOL should be an array (created and declared) with 2 to
999 boolean elements. This area is used to hold boolean data that is
being transferred.

IMPORTANT

The boolean array size is also entered in the structure at the
DATA input of C-SERXCV. The default size specified there is 2.
If you create an array with a different size, be sure to change the
default in the structure at the DATA input also.

IMPORTANT
Do not use a positive or negative transistional contact in your LDO with the
BOOL array.

If it is necessary to set up a transistional contact with a BOOL array, use the
BOOL array to energize another boolean coil. Then use this boolean for the
transistional contact as shown in the example below.

I BOOL-X

1-1 PI-- - - -

DATA The input at DATA is used to specify the name of the main data area.
This data area is a structure that you enter which contains every data
type available except booleans. For each data type that exists on the
PiC, there are two field entries in the structure (except booleans). The
format for this data structure is shown in Table 2-l in the network
transfer section.

Programming the PiC900 2-15

IMPORTANT

The format of the structure has already been defined and must be
followed. The data types must be entered exactly as listed in the
declarations table. But the size of each data type is selected by
you, with each type having a minimum size of 2 (default) and a
maximum of 999. Always be sure to change the Init Val column
in the software declarations table when you change the size of a
data type. Failure to do so will generate an error or cause invalid
data transfer.

R S V D Reserved for future use.

R The input at R should be the same as defined for the R input to the
C-NETXCV ASF‘B. It is the predefined structure shown in Table 2-3
in the network transfer section.

Outputq

OK The output at OK is set if the initialization completed successfully.

FAIL The output at FAIL is set if initialization was not completed
successfully. The output at ERR will indicate the error.

E R R The output at ERR will be 0 when an error occurs in the initialization
of the C-SERXCV ASFB.
ERR #
1 - 44 Check Appendix B in the PiCPro Software Manual for a

description of these errors.
133 The structure defined at DATA is invalid. Check Init

Values declared for all entries in the structure defined in
the software declarations table.

RCM D The output at RCMD is energized for one scan if a message is
received. The message header is available in the structure defined at
the R input.

2-16 Programming the PC900

Chapter 3 - Programming the Host Computer

3.1 - Overview

This chapter explains how a host computer (personal computer or PC) is
programmed or configured to communicate to the PiC900 family of controls
Several different drivers will be discussed. Each driver has application
programming requirements, but all implement the standard Giddings & Lewis
COMM900 communication protocol. This means that the PiC must be running
either the serial (C SERXCV) or network (C NETXCV) transceiver function
blocks to communzate to the PC. These function blocks are described earlier in
the manual and come with the COMMBOO ASFB software package.

Regardless of which communication driver is used in the PC, the main application
ladder running in the PiC must incorporate either the serial or network transceiver
function block.

3.2 - Interfacing to Standard COMMSOO Device Drivers

COMMBOO provides a function level interface for both serial and network
communications to a PiC. The main application program is typically written in ‘C’
or ‘C++’ and “calls” the functions provided to handle the task of communicating
between the PC and the PiC(s). The serial and network drivers are written to
support the DOS operating system only. Applications developed using these
drivers must be run in DOS.

3.3 - Network Drivers

When performing network communications, the main application program must
interface to three different functions. These functions perform the initialization
and data communication functions over ARCNET.

ARCINIT The ARCINIT function is called once when the application is
started. It will initialize the ARCNET hardware to the selected
hardware settings and will make this device an active node on the
network.

ANYBODY The ANYBODY function may be called at any time but is
typically called once when the application is started to query the
network to identify if there is at least one other node on the
network.

NET900 The NET900 function is called to initiate a data transfer message
with any PiC node on the network. It will transfer the message
and verify through a response mechanism that the message was
transmitted and received successfully.

Each of these functions will be explained in the next section.

Programming the PC in ‘C’ 3-1

ARCINIT (pl ,p2,p3,p4)

The ARCINIT function is called to initialize the ARCNET hardware in the PC.

IMPORTANT

The settings shown below must match those selected in order for
the ARCNET board to operate correctly with your PC
configuration. If these settings do not match, communication will
fail.

Parameters

Parameter Default Value Description

Pl 2eO Hex I/O Port Address

P2 cc00 Hex Memory Base Address

P3 00 Hex Memory Offset

P4 03 Hex Node Number

Ctt Data Type

short int

short int

short int

short int

Return Status

A value of zero (0) indicates that the ARCNET board initialized successfully.
Other error codes are described in Appendix A. The C++ return value data type is
int.

Example

/* Initialize the ARCNET hardware */

if (init-ok !=O){

/*Error initializing ARCNET hardware */

printf(“ARCNET initialization failure, error #%\n”,init-ok);

3-2 Programming the PC in ‘C

ANYBODY ()

The ANYBODY function is called to query the network to see if there is another
node on the network. It should be called at least once at the start of the
application program.

Parameters

None

Return Status

A value of zero (0) indicates that the network is operating and that there is at least
one (1) other node communicating on the network. Other error codes are
described in Appendix A. The C++ return value data type is int.

Example

/* Check network for other nodes */

other nodes =anybody();

if (other-nodes ! =0) {

/*No other ARCNET nodes found*/

printf(“No other nodes found error #%\n”,init-ok);

Programming the PC in ‘C 3-3

The NET900 function is called to initiate data communications between the PC
and a PiC. It is used to read data from or write data to a PiC via an application
program running in the PC. The data transferred can be any of the data types
listed in Appendix B. Only one data type can be transferred per message.
Multiple data types can be transferred using the custom data type. Each message
can contain up to 240 bytes of data.

Parameters

arm Range of Values Description Ctt Data Type

Pl 80 Hex (read) Function unsigned char
CO Hex (write) Command to perform READ or WRITE

p2 00 Hex thru lb Hex Data Type unsigned char
Type of data to be transferred. See
Appendix B.

P3 memory address Data Pointer unsigned char far *
Pointer to memory area in PC where the
data is stored. This pointer is defined as
void allowing any data type to be passed.

P4 0 to 998 Data Array Index unsigned int
This index specifies the starting array
element in the PiC identified in parameter
6.

P5 1 to 240 for all one Data Quantity int
byte data types Quantity of the array elements to transfer.
1 to 120 for all two The maximum number depends on the
byte data types data type being transferred.
1 to 60 for all four Refer to the PiCPro Software Manual to
byte data types determine the size for each data type.
1 to 30 for all eight

’ byte data types
1 for all string data
types

P6 1 to 255 Node unsigned char
(excluding 65) Destination node number

P7 1 to 3 Retry Count unsigned char
Number of times to retry sending message
before reporting an error

P8 00 Hex or 01 Hex Miscellaneous Flags unsigned int
Typically set to 00 Hex. Set to 01 Hex if
the calling program does not support one
byte data types or if you are using Visual
Basic.

3-4 Programming the PC in ‘C

Return Status

A value of zero (0) indicates that the message was sent and received correctly.
Other error codes are described in Appendix A. The C++ return value data type is
int.

Example

#define READ-CMD 0x80
#define WRITE-CMD OxCO
#define TYPE-INT OxOA

/*Define symbol to be hex 80*/
/*Define symbol to be hex CO*/
/*Define symbol to be hex OA*/

int int_data[5]; /*Declare array of integers*/

/*Send a READ message to node 6-Read 5 SINT variables starting at array index 3.*/

/*Retry once upon a failure.*/

comerr=net900(READ_CMD,TYPE_INT,&int_data[O],3,5,6,1,0);

if(comerr){

/*Unable to send message or invalid message*/

printf(“Error sending message to PiC node #6, error #%d\n”,init-ok);

3.4 - Serial Drivers

When performing serial communications, the main application program must
interface to three different functions. These functions open, configure, and close
the selected serial port and performs the data communication functions over the
serial line. -

SERIAL-OPEN The SERIAL OPEN function is called once when the
application is-started. This function will open the serial port
and configure it to the selected communication settings.

SERSOO

SERIAL-CLOSE

The SER900 function is called to initiate a data transfer
message with the PiC node connected via the serial link. This
function will transfer the data and verify through a response
mechanism that the message was transmitted and received
successfully.

The SERIAL-CLOSE function is called once when the
application no longer needs to communicate to the serial
port. This function will close the serial port. The application
will need to re-open the port using the SERIAL-OPEN
function to communicate to the PiC once the
SERIAL-CLOSE function is executed.

Programming the PC in ‘C 3-5

These functions will be explained in the next section.

SERIAL-OPEN (pl ,p2,p3)

The SERIAL-OPEN function is called once at the beginning of your application
to open and configure the serial port that will be used for communications to the
PiC. Once opened this port cannot be used by any other programs.

Parameters

Irm Range of Values Description

,l 1 to 2 COM port number

C++ Data
Type
unsigned
char

,2 Bit 7 Bit 6, 5 Bit 4, 3 Bit 2 Bit 1,O Configuration Byte int

Hardware N/A Parity Stop Bits Word Bit pattern to set port
Hand- O,O=none O=l Length characteristics.
shaking

O,l=odd 1=2 1,0=7 bit Important: These
O=none 1,l = 8 bit

must match settings

l=cTS/ l,l=even specified at the CFG

RTS
input of the
C SERXCV function
bi&k.

:ample:
Hex = 00000011 Binary = 8 data bits, 1 stop bit, no parity, wl no hardware handshaking.

13 1200, 2400, 4800, 9600, 19200 Baud Rate unsigned
Important: This int
must match baud rate
specified at the CFG
input of the
C SERXCV function
b&k.

Return Status

A value of zero (0) indicates that the serial port opened and configured
successfully. Other error codes are described in Appendix A. Note that a
successful status returned from this function does not guarantee correct pinout of
the serial cable. The C++ return value data type is int.

Example
#define CONFIG-STR 0x03 /*8 bit, no parity, 1 stopbit, no handshaking*/
open~ok=serial~open(l,CONFIG~STR,9600);

if(open-ok!=O){

/*Unable to open and configure serial port */

printf(“Error initializing serial port, error #%\n”,open-ok);

3-6 Programming the PC in ‘C’

The SER900 function is called to perform data communications between the PC
and a PiC. It is used to read data from or write data to a PiC via an application
program running in the PC. The data transferred can be any of the data types
listed in Appendix B. Only one data type can be transferred per message. Each
message can contain up to 240 bytes of data. Multiple data types can be
transferred using the custom data type.

Parameters

Parm Range of Values Description C++ Data Type

Pl CO Hex (write) Function unsigned char

80 Hex (read) Command to perform READ or WRITE

P2 Data Type unsigned char
00 Hex thru lb Hex Type of data to be transferred. See

Appendix B .

p3 Data Pointer unsigned char far *

memory address Pointer to memory area in PC where the
data is stored. This pointer is defined as
void allowing any data type to be passed.

P4 Data Array Index unsigned int

0 to 998 This index specifies the starting array
element in the PiC identified in
parameter 6.

P5 1 to 240 for all one Data Quantity int
byte data types Quantity of the data array to transfer.
1 to 120 for all two The maximum number depends on the
byte data types data type being transferred.
1 to 60 for all four Refer to the PiCPro Software Manual to
byte data types determine the size for each data type.
1 to 30 for all eight
byte data types
1 for all string data
types

P6 Port unsigned char

1 to 2 COM port number

P7 Retry Count unsigned char
1 to 3 Number of times to retry sending

message before reporting an error

~8 Miscellaneous Flags unsigned int
00 Hex or 01 Hex Typically set to 00 Hex. Set to 01 Hex if

the calling program does not support
one byte data types or if you are using
Visual Basic.

Programming the PC in ‘C 3-7

Return Status

A value of zero (0) indicates that the message was sent and received correctly.
Other error codes are described in Appendix A. The C++ return value data type is
int.

Example

#define READ-CMD 0x80
#define WRITE-CMD OxCO
#define TYPE-INT OxOA

/*Define symbol to be hex 80*/
/*Define symbol to be hex CO*/
/*Define symbol to be hex OA*/

int int_data[5]; /*Declare array of integers*/

/*Send a READ message to COM l*/

/*Read 5 SINT variables starting at array index 3.*/

/*Retry once upon a failure.*/

comerr=ser900(READ~CMD,TYPE_INT,&int~data[O],1,5,6,1,0);

if(comerr)(

/*Unable to send message or invalid message*/

printf(“Error sending message to PiC, error #%d\n”,comerr);

>

3-6 Programming the PC in ‘C

SERIAL-CLOSE (pl)

The SERIAL-CLOSE function is called once upon the completion of your
application program to close the serial port. This will return the port to the
operating system for use by other programs.

Parameter

Parameter Range of Values Description C+t Data Type

Pl 1 to 2 COM port number unsigned char

Return Status

A value of zero (0) indicates that the port was closed successfully. Other error
codes are described in Appendix A. The C++ return value data type is int.

Example

comerr=serial~close(1);

3.5 - Interfacing to Optional DLL Drivers

An option to the standard drivers that come with the COMM900 ASFB package is
the PiC Dynamic Link Library (DLL) for Windows. This product is an add-on
option for the COMM900 ASFB product and is available for both serial and
network configurations. Microsoft Windows 3.1 is required when using the 16-bit
DLL. Window 95 or NT is required when using the 32-bit DLL.

The software programming interface to the functions found within the DLL is
identical to that described in the section entitled “Interfacing to Standard
COMM900 Device Drivers” of this chapter. All function names and the calling
parameters are the same, however, the underlying software has been modified to
allow it to run under the Windows environment.

Whereas the standard device drivers that come with COMM900 are distributed in
the form of individual object files (i.e., .OBJ files), these device drivers are
distributed in Dynamic Link Libraries or DLLs.

A library is a mechanism by which multiple functions can be grouped and stored
as a single file. Your application can then be compiled and linked with the library
file to create the program the operator will run. The size of the resulting program
then includes all of the main program plus the functions that were in the library
file.

A DLL is simply another type of library. A DLL, however, is a special type of
library supported by Windows allowing your application program to be compiled
and linked without including the library file. This will keep the size of your
program much smaller and Windows will automatically load the code found in the
library when a function in that library is called in the main program. The main
program must, however, register the names of all DLLs and the functions stored in
each library upon startup so Windows knows where the code for each function is
located.

Programming the PC in ‘C’ 3-9

Information on interfacing to a DLL can be found in the documentation for the
programming language you are using.

3.6 - Interfacing to Optional DDE Server

Another option to the standard drivers that come with the COMM900 ASFB
product is the Dynamic Data Exchange (DDE) server. This is an add-on option
for the COMM900 ASFB product for the PiC. Miclrosoft Windows 3.1 is required
when using 16-bit DDE. Window 95 or NT is required when using 32-bit DDE.

A DDE server is a Windows program that incorporates the software drivers
required to communicate to the PiC900 family of controls using either serial or
network communications. The software is configurable to any communications
port or network configuration. The program can be run manually or placed in
the Startup group for Windows to automatically run when Windows is started.

Any DDE client compatible Windows program can communicate to the DDE
Server using a standard DDE message. A DDE message uniquely identifies the
PiC node and memory address to be accessed. Any of the standard PiCPro data
types can be used excluding the 64-bit data types.

The DDE server interfaces to the COMM900 transceiver function block. As with
the standard device drivers, the DDE server can access up to 999 different
addresses for each of the supported data types. To access any memory location,
use the following DDE message syntax.

(application name}jtopic!item

where,

‘application name’ is the program name PIG-DDE
‘topic’ is the node name assigned to the PiC
‘item’ is the memory address

A memory address consists of the short data type name (i.e. USINT for unsigned
short integer) followed immediately by an array index number. Index numbers
start at zero and go to 998. These memory addresses map directly to the data
arrays found inside,the structure specified at the DATA input to the C-NETXCV
and C-SERXCV function blocks.

Example

In this example, the DDE server is used to access the tenth unsigned double
integer value from the PiC node named ‘CUTTER’.

PIG-DDEICUTTER!UDINTB

This DDE address maps directly to DATA.UDINT-D(9) in the PiC control.

Refer to the PiC DDE Server User Manual for more information on the
configuration and use of this product.

3-10 Programming the PC in ‘C

3.8 - Interfacing to Third Party Drivers

Another option to the standard drivers that come with the COMM900 ASFB
product is to purchase a driver developed by a third party software developer to
be used with an operator interface program or device. Giddings & Lewis works
with many third party developers to incorporate the standard COMM900 protocol
into their application software or hardware. These drivers are written to interface
to the standard transceiver function blocks described in this manual. You will
need the COMM900 ASFB software to get the function blocks to communicate
with the third party driver.

Most third party software drivers implement both the serial and network interface
to the PiC and can read or write virtually all of the standard PiCPro data types
excluding the 64-bit data types. Within each data type there are typically up to
999 different memory locations that can be addressed.

The actual implementation of the device driver will vary from vendor to vendor.
The software vendor should be contacted directly for any application questions or
for device driver specifications or support.

Programming the PC in ‘C 3.11

NOTES

3-12 Programming the PC in ‘C’

Appendix A - Error Codes

The following are common error codes returned by the communication drivers
provided to communicate to a PiC from a host computer.

Error Codes from Local Node

Serial or network errors

ERR # Description
-1 Invalid parameter in NET900 or SER900 function
-2 Received sequence number does not match command sequence

number
-3 Response status error
-4 Response checksum error
-5 Timed out waiting for response - Network may be busy. Try to

resend message.

Network errors only

ERR #
-6
-7
-8
-9

-10
-11
-12
-15
-20
-21
-22

Description
Cannot process command - network in reconfiguration
Transmitter not available for use
Timed out on transmit
No other nodes on network - token not found
NIM initialize command timed out without getting Dl
Incorrect status found after reset
Power on reset flag could not be cleared
Invalid port
Invalid host mode
Memory allocation error
Driver initialization error

Error Codes from Remote Node

These are the six least significant bits of the STATUS byte in a response.

ERR # Description
1 Unrecognized data type
2 Requested data exceeds array size
4 Data byte count > 240 bytes
5 Invalid data structure format

Destination nodes data structure is invalid. Check Init Values declared
in the software declarations table.

Error Codes A-l

NOTES

A-2 Error Codes

Appendix B - COMMSOO Data Types

When entering the type of data to be transferred, use the hex code or the label
shown below. NOTE: When hex codes are entered as constants in PiCPro, they
must be proceeded by 16#. For example, enter the hex value OA as 16##OA.

HEX LABEL Size of Data Type (in bytes)

00 TYPE-BOOL 1

01 TYPE-BYTE 1

02 TYPE-WORD 2

03 TYPE-DWORD 4

04 TYPE-LWORD 8
05 TYPEJSINT 1

06 TYPEJJINT 2

07 TYPE-UDINT 4

08 TYPE-ULINT 8

09 TYPE-SINT 1

OA TYPE-INT 2
OB TYPE-DINT 4

o c TYPE-LINT 8
OD TYPE-REAL 4

OE TYPE-LREAL 8
OF TYPE-STRING Variable (2 bytes + string length)
10 TYPE-DATE 2
11 TYPE-DATETIME 4

12 TYPE-TIMEOFDAY 4

13 TYPE-TIMEDURA 4

14 TYPE-CUSTl User-definable

15 TYPE-CUST2 User-definable

16 TYPE-CUST3 User-definable
17 TYPE-CUST4 User-definable

18 TYPE-CUSTS User-definable
19 TYPE-CUST6 User-definable
1A TYPE-CUST7 User-definable
1B TYPE-CUST8 User-definable

Data Types B-1

NOTES

B-2 Data Types

Appendix C - Protocol and Frame Definitions

This information is included for reference only. The user does not need to
understand the protocol to use the package. All protocol encode and decode is
handled within the supplied functions.

This protocol is to be used on a full duplex, asynchronous RS-232 serial
connection between a Giddings & Lewis PiC and a PC. This protocol also applies
to an ARCNET connection with the addition of a lo-byte header attached to the
start of the message. Since the ARCNET connection can be used by PiCPro
and/or the ladder via the COMM900 product, a header frame is required to
designate to the transport layer in the PiC where an incoming message should be
delivered.

PC to PiC communications is based on a Command/Response protocol. Only two
types of messages are defined: Command messages and Response messages.
This protocol uses a variable size frame with a fixed size header and trailer. The
header and trailer account for the overhead of each message. All messages have
14 bytes of overhead: 11 in the header and 3 in the trailer, plus data bytes.

NOTE: Some messages will be all overhead. Example: Read command messages
and Write response messages.

The PC is defined as the Master which initiates all communications. The PiC is
defined as the Slave which will respond only to COMMANDS from the Master.
The PC (Master) generates a COMMAND to the Slave and waits for a
RESPONSE. When the RESPONSE is received the transaction completes, and in
the case of a valid READ command, any data returned from the SLAVE is written
to PC memory. ,

All transactions must be contained within one frame. Multi-frame transactions are
not supported. For example, to read 100 Double Integers (DINTS) requires 400
bytes of data. Since a frame is allowed only 240 bytes of data, two reads are
necessary to retrieve all 400 bytes.

If a RESPONSE message corresponding to the COMMAND sent is not received
before the timeout timer expires, the COMMAND message is re-sent and the timer
is re-started. A ‘retry counter is incremented to reflect the retry and checked
against the maximum limit. If the maximum limit for retries is reached, an error
is returned.

With the release of PiCPro 7.0, two changes in the ARCNET protocol were
required. These changes to the protocol only exist when you set up a PiCPro
Network ID to be non-zero. If the ID is zero, the old protocol is run.

1. A message number (Byte #2 in the ARCNET Header Frame) was added.
This byte was previously not used. The message number is incremented
from 1 to 255 and rolls over to 1 after the first 255 messages. The
message number is used to detect duplicate messages.

Protocal and Frame Definitions C-l

2. An acknowledgment (ACK) message must be sent for every message
received. The ACK message indicates that the message was delivered
successfully and a RESPONSE message is imminent. The ACK message
consists only of the 10 byte ARCNET Header Frame for the message that
was sent with Byte #l changed to a value FE hex indicating a Ladder
Acknowledgment. If the receiving node fails to acknowledge a message
received within 200 ms the sender will resend the same message.

PiC Data Communications Frame Description

Serial Communications Frame

Command/Response Frame

Command Header (11 Bytes) Data Trailer (3 Bytes)

ARCNET Communications Frame

Command/Response Frame

ARCNET Header (10 Bytes) Command Header (11 Bytes) Data Trailer (3 Bytes)

ARCNET Header

Byte 0 Byte 1 Byte 2 Bytes 3,4, 5, 6, 7, 8, 9

Vendor ID Message Message Not Used
D7 Hex Type Number

Vendor ID

D7 Hex Giddings & Lewis ID I

Message Type

01 Hex Ladder Message

02 Hex System Message

FE Hex Ladder Acknowledgment

FF Hex System Acknowledgment

Message Number

Uniquely identifies ARCNET message. Starts at one end and increments to 255
and then rolls back to 1.

c - 2 Protocal and Frame Definitions

Command\Response Frame

Command or Response Frame

Byte 0 Byte 1 Byte 2 Byte 3

Start Code Source Destination Frame Byte LSB

FO Hex Node Node Count

Byte 6 Byte 7 Byte 6 Byte 9 Byte 10 Data 0

Control Control Control Control Control Data -+-
Word # 0 Word # 1 Word # 2 Word # 3 Word # 4 Byte#O

Data 1 1 Data2 1 Data n 1 Byte n+12 1 Byte nt13 I Byte ntl4

Data Data Data
Byte# 1 Byte#2 Byte#n

Command - Control word definitions

Checksum
LSB

f$e&ksum 1 ;p;Ede /

By%e 6 Control Word 0 Command Code -
CO hex - WRITE command
80 hex - READ command

Byte 7 Control Word 1 Data type - See Data type code list in Appendix B.
By%e 6 Control Word 2 Data byte count.

By%e 9 Control Word 3 PiC Destination Index (low byte).
ByPe 10 Control Word 4 PiC Destination Index (high byte).

Response - Control word definitions

tiy%e 6

Byte 7
By%e 6

Byte 9
By%e 10 Control Word 4 Reserved - not defined

Control Word 0 ,Response Code - same as the Command without the MSB
40 hex - WRITE! Response
00 hex - READ Response

Control Word 1 Data type - See Data type code list in Appendix B.
Control Word 2 Data byte count.
Control Word 3 Status byte - See Status byte description following.

Protocal and Frame Definitions c-3

Command/Response Code (Control Word 0)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3
CMDIRSP WRITE/READ Not Used Not Used Not Used

Bit 2
Not Used

Bit 1
Not Used

Bit 0
Not Used

Bit 7: Set to one for a command message. Set to zero for a response.

Bit 6: Set to one for a WRITE command. Set to zero for a READ command or
response.

Bit 5:
. \

I
. Not used.
. I

Bit 0:

Response Status Byte

Bit 7
ERROR

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used E-code b5 E-code b4 E-code b3 E-code b2 E-code bl E-code b0

Bit 7: If bit 7 is set, an error occurred in the message transaction.

Bit 6: Not used - set to 0.
Bit 5:

. \

. Contains an error code when bit 7 indicates an error exists.

. I
Bit 0:

Possible status values in a Response Frame (Control Word 3)

00 Hex No error

81 Hex Unrecognized Data Type (See Data Types in Appendix B.)

82 Hex Requested Data Transfer Exceeded Size of Array in the PiC

84 Hex Data Byte Count Exceeded Frame Size: > 240 bytes.

85 Hex Invalid configuration of the input data structure.

The checksum is generated by summing all the bytes, from the start byte to the
byte before the checksum bytes, and then taking the 2s complement of that
value. The checksum is a 16-bit value, with the LSB being sent first followed by
the MSB.

c - 4 Protocal and Frame Definitions

Shown below is an example of a WRITE Command to send one LONG INT (‘C’ 4
byte number) from the PC to PiC:DATA.DINT-D(5). Also shown is an example
RESPONSE to the WRITE command.

BYTE
0
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17

WRITE
DATA Description
FO start code
00 source node
01 destination node
12 frame byte count
01 LSB sequence #
00 MSB sequence #
co write command
OB data type = DINT
04 # of data bytes
05 dest address - low

byte
00 dest address -

high byte
00 data (LSB)
7F data
FF data
FF data (MSB)
AB LSB checksum
FB MSB checksum
81 stop code

BYTE
RESPONSE

DATA Description
0 FO
1 01
2 0 0 ’
3 OE
4 01
5 00
6 40
7 OB
8 04
9 00

10 00

start code
source node
destination node
frame byte count
LSB sequence #
MSB sequence #
response
data type = DINT
of data bytes
status byte - no
error
not used

11 Bl LSB checksum
12 FE MSB checksum
13 81 stop code

The following flowchart illustrates the command and response communication
protocol.

Protocal and Frame Definitions c -5

Figure 1.1 Flowchart of data transfer steps

I Build up READ command frame

Append ARCNET heade
to beginning of message

‘k YES

C-6 Pro focal and Frame Definitions

Index

A
ARCNET l- 13,14

configuration 2- 4,3- 2
ASFBs l- 3, 11, 2- 1, 2, 14

files l- 16, 17
guidelines l- 3
library 2- 2,14
network 2- 2
revising l- 4,5
serial 2- 14
transceiver l- 10,2- 3,14
transmitter l- 10,2- 12
using l- 6

ASSIGN function block 2- 15

B
baud rates l- 7,8
boolean 2- 4,16

C
cables l- 13
coMM900

files l- 15
communications

drivers l- lo,12
network l- 8

connections l- 14
ports l- 7
serial l- 7

connections l- 13
C‘ONFIG function block 2- 16.
configuration 3- 2

network 2- 3
serial 2- l&3- 6

connection
distance l- 8

C-NETXCV function block l- 11,2-
1, 3

DATA input structure 2- 7
example 2- 8

errs 2- 11
inputs 2- 3
outputs 2- 11

C-NETXFR function block l- 11,2-
1, 12

errs 2- 13
inputs 2- 12
outputs 2- 13

C-SERXCV function block l- 11,2-
1, 15

errs 2- 17
inputs 2- 15
outputs 2- 17

D
data

custom 2- 7
structure 2- 7,16
types B- 1

directory l- 3
drivers l- 12,3- 1

communications l- 10
DDE l- 12,3- 10
DLL l- 12,3- 9
network 3- 1
serial 3- 5
third party 3- 11

Dyn..m’; “,a’;zchange Server (DDE)

Dynarmc’Link Library (DLL) l- 12,3-
9

E
error codes A- 1
EXAMPLES

directory l- 3
files l- 16, 17

F
files

ASFBS l- 16,17
COMM900 l- 1516 ’
EXAMPLES l- 16,17
network l- 16
serial l- 17

flowchart C- 6
frame C- 1
function blocks l- 1

transceiver 1- 10,2- 3, 15
transmitter l- 10,2- 12

G
GUI interface l- 12
guidelines

ASFBs l- 3

Index i

H
hardware

handshaking l- 13
requirements 1- 13

I
ID

network l- 12,2- 4
installation l- 3

hardware l- 14
software l- 15

L
ladder

main 2- 1,2
source l- 4

LDO files l- 3
LIB files l- 3

M
main ladder 2- 1,2
multi-drop connection l- 8

N
network

communications
check 3- 3
connections l- 14

configuration 2- 3
ARCNET 3- 2

data 3- 4
files l- 16
software l- 8

network ID l- 12
node number 2- 3

‘ P

communication l- 7
programming requirements l- 17
protocol 3- 1, C- 1

R
revising ASFBs l- 4,5
RS-232 l- 7

configuration 2- 15,3- 6
wire length l- 7

S
serial 3- 5

close port 3- 9
communications

connections l- 13
module 2- 15

configuration 2- 15,3- 6
data 3- 7
files l- 17
software l- 7

single-drop connection l- 7
software

interface l- 10
network l- 8
serial l- 7

software requirements l- 15
source ladder 1- 4
startup l- 18
structure

DATA 2- 4
QUE 2- 8,9
R 2- 10, 17

T
transceiver function blocks l- 10,2- 3,
15
transmitter function blocks l- 10,2- 12

U
parameters

ANYBODY 3-3
ARCINIT 3- 2
NET900 3- 4
SER900 3- 7

upgrade notice l- 1

V
version numbers l- 4

SERIAL CLOSE 3- 9SERIAL-OPEN 3- 6 W
PiCPro network ID l- 12,2- 4 Windows 3.1 l- 12,3- 10
pinouts l- 13

support
Wonder-ware MMI l- 12

port 2- 15

ii Index

